Minimum Spanning Trees

Outline for Today

« Minimum Spanning Trees

* Wiring things cheaply.
 Kruskal’s Algorithm

* A beautitul and elegant algorithm.
 Applications of MSTs

» ...to lots of problems!

A Problem on Graphs

12 O

Goal: Link these
nodes together
as cheaply as
possible.

Goal: Link these
nodes together
as cheaply as
possible.

Goal: Link these
‘ nodes together
as cheaply as

possible.

Goal: Link these
nodes together
as cheaply as
possible.

Goal: Link these
‘ nodes together
as cheaply as

possible.

O
This graph is nof
connected. Goal: Link these

‘ nodes together
as cheaply as

possible.

12

Goal: Link these
‘ nodes together
as cheaply as

possible.

There is a cycle in this
graph, It can't be The
cheapest way To link
everything,

12

Goal: Link these
nodes together
as cheaply as
possible.

A spanning tree in an undirected
graph is a set of edges with
no cycles that connects all nodes.

Cost:
3+0+5+7+8+12+9 =50

Cost: ‘

3+4+7+8+6+12+9=49

Cost:
1+3+5+4+1+04+2=22

A minimum spanning tree (or MST) is a
spanning tree with the least total cost.

Applications

Electric Grids

* Given a collection of houses, where do you lay wires to
connect all houses with the least total cost?

* This was the initial motivation for studying minimum
spanning trees in the early 1920's. (work done by Czech
mathematician Otakar Boruvka)

Data Clustering

e More on that later...
Maze Generation

 More on that later...
Computational Biology

e More on that later...

Finding an MST

MST Algorithms

« The original MST algorithm (1926) that Boruvka
proposed is now called Boriivka’s algorithm.

« Later, the Czech mathematician Vojtéch Jarnik
(1930) invented an algorithm now called Prim’s
algorithm.

« After that, American mathematician Joseph
Kruskal (1956) developed what’s now called
Kruskal’s algorithm, which is what we’ll
present today.

* There’s been a ton of work since then - come
talk to me after class for details!

Kruskal’s Algorithm:

Remove all edges from the graph.

Repeatedly find the cheapest edge that
doesn’t create a cycle and add it back.

The result is an MST of the overall graph.

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

v
it back to the graph. 7 7 :
v D
Re g 7
” :
o’ I
; : : 5 :
¢ .
PO !
5 ¢ f s~ 6 :
X4 i g i
o’ 19 % 1 6
e : e :
" | ‘s i
Q : Q— 7
¢ T o ¢
PO T i AN
1,2 . ‘.3 : 6 ¢+ :
D
Re ; 4 . g 4 o g 2

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

Y 4

it back to the graph. 7 7 :
'O' : 7

; |

e 5 1

Y 4 ; S ;

e . e .

5 o y ~ 06 .

¥ 4] S |
o’ 19 % 1 6

l' : ~S :

O/ 4 C' 7 T

S Y 4

' : “ 1 " i

1 & I 3 D 5 o i
" L4 \‘ 14 R : 2

L 3 Y 4

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

) 3

o

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that
doesn’t create a cycle and add

_J A graph can have many
minimum spanning frees,
Here, The choice of

which length—4 edge we

visif first leads fo
different resulis,

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

X 4
it back to the graph. 7 7 :
'O' 7
; |
o’ 5 :l
5‘
i i
5 : ‘s 6 :
15 \‘ . 6
i 5‘ i
i i
(I g
Y 4
X 4
1 o’
3 6, ,
X 4
Y 4
X 4
Y 4
(A

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

X 4
it back to the graph. 7 7 :
'O' 7
; |
o’ 5 1
§ ;
Ss |
s/ 0 w6
5 . 6
o
i
(I 0O
Y 4
X 4
1 o’
3 6, ,
X 4
Y 4
X 4
Y 4
(A

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

X 4
it back to the graph. 7 7 :
Y 4
Re 7
'l |
i
o’ 1
I 5 :
S
Ss |
5 ~ 6 n
S |
AN g O
5~ |
S i
L N |
(— O
Y 4
X 4
1 o’
3 6, ,
X 4
Y 4
X 4
Y 4
(A

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

X 4
it back to the graph. 7 7 :
Y 4
Re 7
; |
o’ 1
)
Il B
S
Ss |
5 ~ 6 n
S |
AN g O
5~ |
S i
L N |
(— O
Y 4
X 4
1 o’
3 6, ,
X 4
Y 4
X 4
Y 4
(A

Find the lowest-cost edge that Q
doesn’t create a cycle and add ¢

it back to the graph. 7

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

(—C

Oo—0O C

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

4

Oo—0O O—C

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Find the lowest-cost edge that
doesn’t create a cycle and add
it back to the graph.

Here’s our MST!

Try It Yourself!

Find a minimum spanning tree for
the graph shown below. Then tell us
the total cost of that MST.

Answer at
htips://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

O L 10 OO
90 3

Try It Yourself!

OO~ OO0
OGOS E\OSO

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Try It Yourself!

Q. O (O—
1 10

3 & ‘ 9 9

O O O

Try It Yourself!

Q. O (O—C
1

3 & ‘ 9

O O O

Try It Yourself!

3+4+1+5+24+9+44+8=36

Q. O (O—C
1

3 & ‘ 9

O O O

Maintaining Connectivity

 The key step in Kruskal's algorithm is
determining whether the two endpoints
of an edge are already connected to one
another.

» Typical approach: break the nodes apart
into clusters.

 Initially, each node is in its own cluster.

« Whenever an edge is added, the clusters for
the endpoints are merged together into a
new cluster.

5
)
i
™ 1
i
1
1

5
)
i
™ 1
i
1
1

5
)
i
™ 1
i
1
1

O—© (O—Cc

O—© (O—Cc

14
4

Y4

O—© (O—Cc

Implementing Kruskal’s Algorithm

* Place every node into its own cluster.

« Place all edges into a priority queue.

 While there are two or more clusters remaining:
 Dequeue an edge from the priority queue.

« If its endpoints are not in the same cluster:

- Merge the clusters containing the endpoints.
- Add the edge to the resulting spanning tree.
 Return the resulting spanning tree.

Applications of Kruskal's Algorithm

Data Clustering

B ® o
® o ® o
B

@0 @

Data Clustering

Data Clustering

* Given a set of points, break those points
apart into clusters.

 Immensely useful across all disciplines:

* Cluster individuals by phenotype to try to
determine what genes influence which traits.

* Cluster images by pixel color to identify
objects in pictures.

* Cluster essays by various features to see
how students learn to write.

Data Clustering

Data Clustering

Data Clustering

What makes a clustering “good?”

Maximum-Separation Clustering

« A maximum-separation clustering is
one where the distance between the
resulting clusters is as large as possible.

» Specifically, it maximizes the minimum
distance between any two points of
different clusters.

* Very good on many data sets, though not
always ideal.

Maximum-Separation Clustering

Maximum-Separation Clustering

o ® o
© e f@
o
® @
e o @Q\"
o © O
o

Maximum-Separation Clustering

» It is extremely easy to adopt Kruskal's
algorithm to produce a maximum-separation
set of clusters.

* Suppose you want k clusters.

* Given the data set, add an edge from each node
to each other node whose length depends on
their similarity.

 Run Kruskal's algorithm until only k clusters
remain.

 The pieces of the graph that have been linked
together are k maximally-separated clusters.

Maximum-Separation Clustering

2
.

Maximum-Separation Clustering

P4
S

Maximum-Separation Clustering

. ® o
© o _ I
o0 e

¢ o_o0 ©

Want to learn more about clustering?

Take CS246!

Another Application

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

@ O ¢
@ O ¢
@ O ¢
@ O ¢

O

O

-
&

Mazes with Kruskal's Algorithm

O

@

@

@

@

o ! & °

O

O

@

1 5 9
o' 0o°0’e@

@

2 6 5
o:0°‘0’e@

3 ~» S5 .~ 8

O

Mazes with Kruskal's Algorithm

@@ 0@

Mazes with Kruskal's Algorithm

o ----0—0--@
*0 0@
LW W S
o100 0

Mazes with Kruskal's Algorithm

®---0—0-9§
el
lalal
L habal

Mazes with Kruskal's Algorithm

@ 1 --@
S
lalal
L habal

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

@@ 0@

Mazes with Kruskal's Algorithm

@@ 0@

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

--@

Mazes with Kruskal's Algorithm

--@

Mazes with Kruskal's Algorithm

@@ 0@

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

*—0—0@—

(0)
=
—0---90--90

Maze
S Wi
ith Kruskal's Alg
orithm

2 /4 1 '
9 &’
9
2 8 1 Q
8 4 '
3
5
& o
N

Maze
S Wi
ith Kruskal's Alg
orithm

*—0—0—

2 7 1 ‘

o—o O 8

9

2 8 1 Q

o—0 © 8

5

8 4 ‘
3

5

® O

@

Ma
7ZeS Wi
ith
Kruskal's A
lgori
rithm

3
2 1
7: 4
1: 1 !
2 ' 8
8 ®----@
0— 1
2 ' 8
8 o—o
00— 4
' 5
8
@

Ma
7ZeS Wi
ith
Kruskal's A
lgori
rithm

3
2 1
4
@ 1 !
2 ' 8
8 ®----@
0— 1
2 ' 8
8 o—o
00— 4
' 5
8
@

Ma
7ZeS Wi
ith
Kruskal's A
lgori
rithm

3
2 1
4
= 1 i
2 ' 8
8 O----@
= 1
2 ' 8
8 =
= 4
‘ 5
-?-
-@

Maze
S Wi
ith Kruskal's Alg
orithm

*—0—0—
2 1 '
o—o O 8

9
2 8 1 Q
o—0 © 8

5
2 8 4 ‘
' 5

3
@
@ O

Maze
S Wi
ith Kruskal's Alg
orithm

2 1 '

o——@ 8
9

2 8! ¢

0 ¢ 8
5

2 8 4 '

' 5

3
@
@ O

Mazes with Kruskal's Algorithm

3 1 4
o—O0—O0—9@
2 1 8

1 9
o—0 O
2 1 8

2 5
o—9 O—90
2 8 4 5

3
e—0 O ¢

Mazes with Kruskal's Algorithm

3 1 4
o—O0—O0—9@
2 1 8

1 9
o—0 O--—-9
2 1 8

2 5
o—9 O—90
2 8 4 5

3
e—0 O ¢

Mazes with Kruskal's Algorithm
= = =

2 1
1
o—0 O ¢
2 1 8
2 5
o—0 O—90
4 5

2
3
e—0 O ¢

Mazes with Kruskal's Algorithm

Mazes with Kruskal's Algorithm

This is how the
maze generator

in Assignment ‘
7 works!

Mazes with Kruskal's Algorithm

 The algorithm:
* Create a grid graph.
* Give each edge a random weight.
« Compute an MST of that graph.

* This tends to produce mazes with lots
short twisty branches. It’s also really
easy to code up.

Which mazes
were made with
depth-first
search?

Which were

made with
Kruskal's
algorithm?

Answer on
PollEV!

Application: Stem Cells!

Question: How do you determine the
patterns by which stem cells differentiate
into specialized cells?

Step One: Grab a random collection of cells
you know contains a bunch of stem cells.

Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

@
@ QQQ
oo @ QQQ
- $° 8%
QQ @
Q@Q @ 0 -
@ 8@
QQ
@ @ O
88008 QQ 8@
o, T °,
@0

Step Two: Measure a bunch of different features from each
cell and plot those features on a coordinate axis.

@
@ QQQ
oo @ QQQ
- $° 8%
QQ @
Q@Q 8@@ -
QQ @ @
@ @ O
88008 QQ 8@
o, T °,
@0

Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

% o®
. y .
o

Step Three: Cluster those nodes into smaller groups, which
likely represent cells of the same type.

% o®
v_ #
@QD
-

&

Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

Step Four: Find an MST. Nodes are clusters and edges are
distances. This is the cheapest tree connecting the clusters.

Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

Step Five: Figure out which cluster represents the original
stem cells. You now have the likely differentiation pattern!

nature
biotechnology

LE T TERS

The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells

Cole Trapnelll-26, Davide Cacchiarellil-3:6, Jonna Grimsby?, Prapti Pokharel?, Shuqiang Li*, Michael Morse!-2,
Niall] LennonZ, Kenneth] Livak?, Tarjei S Mikkelsen!-3 & John L Rinn1-2>

Defining the transcriptional dynamics of a temporal
process such as cell differentiation is challenging owing to
the high variability in gene expression between individual
cells. Time-series gene expression analyses of bulk cells
have difficulty distinguishing early and late phases of a
transcriptional cascade or identifying rare subpopulations
of cells, and single-cell proteomic methods rely on a priori
knowledge of key distinguishing markersl. Here we describe
Monocle, an unsupervised algorithm that increases the
temporal resolution of transcriptome dynamics using
single-cell RNA-Seq data collected at multiple time points.
Applied to the differentiation of primary human myoblasts,
Monocle revealed switch-like changes in expression of key
regulatory factors, sequential waves of gene regulation,
and expression of regulators that were not known to act

in differentiation. We validated some of these predicted
regulators in a loss-of function screen. Monocle can in
principle be used to recover single-cell gene expression
kinetics from a wide array of cellular processes, including
differentiation, proliferation and oncogenic transformation.

Such averaging artifacts can make factors that are correlated appear
to be uncorrelated or even make positively correlated factors
appear negatively correlated. As a population of cells captured at
the same time may include many distinct intermediate differen-
tiation states, considering only its average properties would mask
trends occurring across individual cells. Solving this problem by
experimental synchronization of cells or by stringent isolation
of precursors at distinct stages is challenging and can sharply alter
differentiation kinetics.

Computational analysis of gene expression data could help
define biological progression between cellular states and reveal regulatory
modules of genes that co-vary in expression across individual cells®.
Previous analyses have used approaches from computational geom-
etry!®!! to order bulk cell populations from time-series microarray
experiments by progress through a biological process independently
of when the samples were collected. The recently developed SPD algo-
rithm can resolve progression along multiple lineages arising from a
progenitor cell type using supervised machine learning'2. However,
because these algorithms operate on bulk expression measurements,
they are sensitive to mixture effects arising from Simpson’s para-

(ST, EETITY, LI R SO I U [O SRS o L GUNAL, PR, | | TR PN | ISR Ry

First the algorithm represents the expression profile of
each cell as a point in a high-dimensional Euclidean space, with one
dimension for each gene. Second, it reduces the dimensionality of
this space using independent component analysis!’. Dimensionality
reduction transforms the cell data from a high-dimensional space into
a low- d1men310nal one that preserves essent1al relationships between

— A] Ala [AR alrals - ()] "_---. 18 -.

Monocle constructs a minimum spanning tree (MST) on the cells, |

previously developed approach now commonly used In other single-
cell settings, such as flow or mass cytometry'-13. Fourth, the algorithm
finds the longest path through the MST, corresponding to the long-
est sequence of transcriptionally similar cells. Finally, Monocle uses
this sequence to produce a ‘trajectory’ of an individual cell’s progress
through differentiation.

Building a repertoire ot abstractions and
algorithms helps you model and solve
larger and larger classes of problems.

Interested in learning more?
Take CS161!

Your Action Items

« Work on Assignment 8.

« Home stretch! It’s due this Friday. Remember that
late days can’t be used here.

 Come talk to us if you have questions! That’s what
we’re here for.

* (Optionally) Attend Review Sessions

 We have two review sessions in Hewlett 200. Tonight
(7:30PM - 9:30PM) is on classes, linked structures,
and the like. Tomorrow (7:30PM - 9:30PM) is on
containers, recursion, and big-O notation.

Next Time

* Course Recap

« Wow, we covered a lot! What did we do this
quarter, and why does it matter?

- Where to Go from Here

« What comes next in computer science?
 Concluding Thoughts

 Ending on a high note.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197

